Application Name | Developer | Made with | Rating | Last updated | Views | Installs |
---|---|---|---|---|---|---|
PivotToJupyterView extracted data from IRIS BI cubes in Jupyter Notebook | P | Docker IPM | 0.0 (0) | 13 May, 2025 | ||
![]() IRIS-Intelligent-Butler# IRIS-Intelligent Butler IRIS Intelligent Butler is an AI intel | Docker Python IPM AI ML ML | 4.0 (1) | 27 Mar, 2025 | |||
InterSystems Ideas Waiting to be ImplementedProgrammatic reportsThe report creation is a tedious and non-productive task. You need an IDE, create a connection, create a SQL query, define report bands, drag-and-drop/design report columns, fields, labels, summarizations, margins, charts and prepare perfect pixel reports for print. To create a tradicional report the effort takes 4 to 12 hours. The idea is to define reports using object script instructions. With some minutes and with writing a few object script lines you can get a report equivalent to a tradicional report, with the benefit to create dynamic content for the reports (productivity). The idea includes yet the feature to allows to the developer set print restrictions for the PDF report generated (reduce carbon emission, not allowing print, only read). Benefits of this idea: 1 - Productivity - develop a report in minutes not in hours 2 - Reduce carbon emission - is possible restrict the PDF print 3 - Create dynamic reports using ObjectScript 4 - No need to install a report server, saving processor and memory resources (decreasing emissions) To create a report using source code, see this sample with Java, but could be in ObjectScript too: TextColumnBuilder<String> itemColumn = col.column("Item", "item", type.stringType()); TextColumnBuilder<Date> orderDateColumn = col.column("Order date", "orderdate", type.dateType()); TextColumnBuilder<Integer> quantityColumn = col.column("Quantity", "quantity", type.integerType()).setFixedWidth(50); TextColumnBuilder<BigDecimal> unitPriceColumn = col.column("Unit price", "unitprice", type.bigDecimalType()); ColumnTitleGroupBuilder titleGroup2 = grid.titleGroup("Group 2", quantityColumn, unitPriceColumn); ColumnTitleGroupBuilder titleGroup1 = grid.titleGroup("Group 1", orderDateColumn, titleGroup2).setTitleFixedWidth(450); report() .setTemplate(Templates.reportTemplate) .columnGrid(itemColumn, titleGroup1) .columns(itemColumn, orderDateColumn, quantityColumn, unitPriceColumn) .title(Templates.createTitleComponent("ColumnTitleGroup")) .pageFooter(Templates.footerComponent) .setDataSource(createDataSource()) .setSecurityRule(PrintRule.READ_ONLY) //if you want restrict print .printPDF(); Y 5Votes3Comments | ||||||
![]() sqlalchemy-irisAn InterSystems IRIS dialect for SQLAlchemy | Docker Python | 5.0 (5) | 01 Mar, 2025 | |||
interoperability-embedded-pythonHack of PEX Python but for Embedded Python | G | Docker Python IPM | 5.0 (15) | 11 Feb, 2025 | ||
![]() Jupyter Server Proxy for VS CodeVS Code extension to provide a local Jupyter server acting as a proxy for IRIS servers defined in Server Manager | Docker | 5.0 (1) | 02 Jan, 2025 | |||
mongoCDCA sample of using embedded python with interoperability | N | Docker | 5.0 (1) | 22 Dec, 2024 | ||
ServiceInspectionA simple application for monitoring Iris service information | W | Docker Python IPM | 5.0 (1) | 13 Dec, 2024 | ||
iris-graphql-demoExample of using GraphQL with InterSystems IRIS with Graphene, S | A | Docker Python | 5.0 (1) | 27 Nov, 2024 | ||
EduVerseAccessible Learning Assistant | R | Python AI | 0.0 (0) | 11 Nov, 2024 | ||
IOP REST Client FrameworkFramework for creating REST API clients in python with IOP | A | Docker Python IPM | 4.5 (1) | 25 Sep, 2024 | ||
![]() IrisheimerAutomates AWS deployment of InterSystems WSGI apps using Pulumi | Z | Python | 4.5 (1) | 22 Sep, 2024 | ||
iris-embedded-python-templateThe simplest template to run embedded python | Docker Python IPM | 5.0 (2) | 01 Sep, 2024 | |||
![]() sqlzillaSQLzilla is designed to simplify SQL query generation | Docker Python AI | 5.0 (2) | 16 Aug, 2024 | |||
IRIS RAG AppIris python first experience django template | A | Docker Python AI ML ML | 4.5 (1) | 06 Aug, 2024 | ||
![]() iris-errors-analysis-graphAnalyze errors on the IRIS portal generate statistical graphs. | L | Docker Python IPM AI | 1.8 (2) | 28 Jul, 2024 | ||
iris-email-analyzer-appIris Email Analyzer for suspicious or confidential content. | E | Docker Python IPM AI | 4.5 (1) | 23 Jul, 2024 | ||
![]() HackUPC24_KlìnicSymptoms Clinical Trial Search Tool using Knowledge Graphs | T | AI ML ML | 0.0 (0) | 15 May, 2024 | ||
AriticleSimilarityComparing article similarity through vector search | x | Docker IPM | 3.5 (1) | 09 May, 2024 | ||
ImageSearchVideoAn image search corresponds to a video application | R | Docker IPM | 4.5 (1) | 07 May, 2024 | ||
![]() Hackupc24_interText-to-video application based on user photos. | J | Python AI | 0.0 (0) | 05 May, 2024 | ||
workshop-py-columnarWorkshop for columnar storage purpose | Docker | 4.5 (2) | 29 Feb, 2024 | |||
FHIR-OCR-AIImage extraction text to fhir message | x | IPM AI | 0.0 (0) | 04 Feb, 2024 | ||
![]() testcontainers-iris-pythonStart container with IRIS directly from python | Python | 5.0 (1) | 01 Feb, 2024 | |||
iris-pretty-gptThis is the easiest assistant for accessing chatgpt | Docker Python IPM | 3.5 (1) | 02 Dec, 2023 | |||
![]() appmsw-django-adminlteApplication tools for use Django AdminLte | Docker Python IPM | 4.5 (1) | 25 Nov, 2023 | |||
iris-imap-python-adaptorAn implementation of an imap python adaptor with a support of OAuth2 | G | Docker Python IPM | 5.0 (1) | 07 Nov, 2023 | ||
![]() try_embedded_pythonAn early attempt to use embedded Python in IRIS 2020.3 | Docker Python IPM | 4.8 (2) | 05 Nov, 2023 | |||
flask-irisA quick guide / template to use Flask and IRIS side by side. | H | Python | 0.0 (0) | 06 Oct, 2023 | ||
dbt-irisdbt is the T in ELT, now with IRIS support | Docker Python | 3.5 (1) | 26 Sep, 2023 | |||
![]() iris-python-machinelearnMachine learning application Python IRIS | Docker Python ML ML | 4.5 (1) | 22 Sep, 2023 |