Home Applications iris-vector

iris-vector

This application is not supported by InterSystems Corporation. Please be notified that you use it at your own risk.
4.75
4 reviews
2
Awards
384
Views
15
IPM installs
1
0
Details
Releases (1)
Reviews (4)
Awards (2)
Issues
Articles (1)
Initial realization for Vector datatype support

What's new in this version

Initial Release

iris-vector

Basic support Vector datatype for IRIS SQL.

Installtion

Install with IPM

zpm "install vector"

Or run this project with docker-compose in development mode

Usage

create table items(embedding vector(3));
insert into items (embedding) values ('[1,2,3]');
insert into items (embedding) values ('[4,5,6]');

SQL Functions

  • Normalize
[SQL]irisowner@/usr/irissys/:USER> select embedding,vector.norm(embedding) from items;
+-----------+--------------------+
| embedding | Expression_2       |
+-----------+--------------------+
| [1,2,3]   | 3.7416573867739413 |
| [4,5,6]   | 8.774964387392123  |
+-----------+--------------------+
2 rows in set
Time: 0.065s
  • sum two vectors
[SQL]irisowner@/usr/irissys/:USER> select embedding,vector.vector_add(embedding, '[1,1,1]') from items;
+-----------+--------------+
| embedding | Expression_2 |
+-----------+--------------+
| [1,2,3]   | [2,3,4]      |
| [4,5,6]   | [5,6,7]      |
+-----------+--------------+
2 rows in set
Time: 0.066s
  • Euclidean distance
[SQL]irisowner@/usr/irissys/:USER> select embedding, vector.l2_distance(embedding, '[9,8,7]') distance from items order by distance;
+-----------+----------------------+
| embedding | distance             |
+-----------+----------------------+
| [4,5,6]   | 5.916079783099616045 |
| [1,2,3]   | 10.77032961426900807 |
+-----------+----------------------+
2 rows in set
Time: 0.012s
  • Cosine similarity
[SQL]irisowner@/usr/irissys/:USER> select embedding, vector.cosine_distance(embedding, '[9,8,7]') cosine from items order by distance;
+-----------+---------------------+
| embedding | distance            |
+-----------+---------------------+
| [4,5,6]   | .034536677566264152 |
| [1,2,3]   | .11734101007866331  |
+-----------+---------------------+
2 rows in set
Time: 0.065s
  • Inner product
[SQL]irisowner@/usr/irissys/:USER> select embedding, -vector.inner_product(embedding, '[9,8,7]') inner from items order by distance;
+-----------+----------+
| embedding | distance |
+-----------+----------+
| [4,5,6]   | -118     |
| [1,2,3]   | -46      |
+-----------+----------+
2 rows in set
Time: 0.062s
  • All in one
select embedding
,vector.norm(embedding) norm
,vector.vector_add(embedding, '[1,1,1]') "add"
,vector.l2_distance(embedding, '[9,8,7]') distance
,vector.cosine_distance(embedding, '[9,8,7]') cosine
,-vector.inner_product(embedding, '[9,8,7]') "inner"
from vector.items

+-----------+----------------------+---------+-----------------------+----------------------+-------+
| embedding | norm | add | distance | cosine | inner |
+-----------+----------------------+---------+-----------------------+----------------------+-------+
| [1,2,3] | 3.741657386773941386 | [2,3,4] | 10.77032961426900807 | .11734101007866331 | -46 |
| [4,5,6] | 8.77496438739212206 | [5,6,7] | 5.916079783099616045 | .034536677566264152 | -118 |
+-----------+----------------------+---------+-----------------------+----------------------+-------+

Indexing

Not implemented yet

Made with
Install
zpm install vector download archive
Version
0.1.020 Sep, 2023
Category
Frameworks
Works with
InterSystems IRIS
First published
17 Sep, 2023
Last checked by moderator
02 Jul, 2024Works