Home Applications withLove

withLove Awaiting Review

by Henry Pereira and 1 others
InterSystems does not provide technical support for this project. Please contact its developer for the technical assistance.
0
0 reviews
0
Awards
4
Views
0
IPM installs
0
0
Details
Releases (1)
Reviews
Issues
An AI-Native Low-Code platform for InterSystems IRIS. Build UIs, REST APIs, SQL Schemas, and FHIR Integrations using natural language agents. Zero boilerplate, pure creation.

What's new in this version

Initial Release
submission for InterSystems Full Stack Contest 2026

  • Embedded Python
  • Vector Search
  • Docker Container
  • RAG

Gitter
License: MIT
InterSystems IRIS
FHIR R4

withLove Banner

πŸ’œ withLove

The First Self-Driving Platform for InterSystems IRIS Health

Vibe-code your healthcare infrastructure β€” IRIS-native, FHIR-compliant, delightfully fast.


πŸš€ Motivation

Building healthcare applications is hard. Creating FHIR APIs, integrating legacy systems (HL7v2), managing multi-tenant databases, and maintaining interoperability workflows requires months of development and deep expertise in InterSystems IRIS for Health.

withLove changes everything.

It’s the first β€œloveable” (delightful + powerful) platform that lets hospitals, clinics, EHR vendors, and healthtech ISVs create:

  • βœ… FHIR R4-compliant REST APIs in seconds
  • βœ… Multi-tenant persistent classes (SQL tables) automatically
  • βœ… Interoperability workflows (HL7, DTL, Business Operations) via natural language
  • βœ… Admin UIs (CRUD interfaces) with modern frameworks (Tailwind/Alpine.js)
  • βœ… RAG-powered knowledge base for protocol-driven development

All through a conversational AI interface β€” just describe what you need in plain language, and withLove builds it for you.


πŸ› οΈ How It Works

withLove utilizes a multi-agent architecture powered by cutting-edge technologies:

Core Technologies

  1. InterSystems IRIS for Health
    High-performance healthcare data platform with native FHIR, and HL7v2 support.

  2. Multi-Agent AI System

    • UI Agent: Generates responsive frontends (Tailwind CSS + Alpine.js)
    • Backend Agent: Creates persistent classes (multi-tenant SQL tables)
    • API Agent: Builds REST APIs with dynamic routing
    • Interop Agent: Generates DTL transformations and Business Operations
    • Knowledge Agent: RAG-powered document search (384-dim vectors)
    • Scanner Agent: Analyzes brownfield code and suggests modernization paths
  3. LLM Integration
    Supports OpenAI ChatGPT, Google Gemini and Anthropic (Claude) via flexible API key configuration.

  4. FHIR R4 Native
    Full compliance with HL7 FHIR R4 standard, including Bundle validation and SDA3 transformation.

Architecture Overview

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    User (Chat Interface)                    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                          β”‚
                          β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              GenAi.AgentRun() (Orchestrator)                β”‚
β”‚  - Intent Detection (CREATE_API, CREATE_TABLE, SCAN, etc)   β”‚
β”‚  - Delegates to specialized factories                       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                          β”‚
         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
         β–Ό                β–Ό                β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   AppFactory    β”‚ β”‚ ApiFactory  β”‚ β”‚ ClassFactory     β”‚
β”‚ (UI Generator)  β”‚ β”‚(API Gen)    β”‚ β”‚(DB Tables)       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚                β”‚                β”‚
         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                          β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚        Multi-Tenant Deployment (dc.withLove.<tenant>)       β”‚
β”‚  - .apps (CSP Pages)                                        β”‚
β”‚  - .api (REST Services)                                     β”‚
β”‚  - .data (Persistent Classes)                               β”‚
β”‚  - .interop (DTL/BO/BS)                                     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ“‹ Prerequisites

  • Docker and Docker Compose installed on your machine
  • API Key for LLM provider:
    • OpenAI API Key (sk-...) or
    • Anthropic API Key (sk-ant-...)
  • Minimum 8GB RAM (16GB recommended for production)
  • 10GB free disk space (FHIR Server installation requires additional storage)

πŸ› οΈ Installation

1. Clone the Repository

git clone https://github.com/musketeers-br/withLove
cd withLove

2. Build the Docker Container

docker-compose build --no-cache --progress=plain

4. Start the Application

docker-compose up -d

5. Wait for IRIS Startup

docker-compose logs -f iris

⚠️ Important Note:
This project automatically installs the FHIR Server via ZPM (zpm "install fhir-server"), which can take 15-25 minutes depending on your network speed and machine specs. Please be patient during the first startup.

You can also check the Management Portal (user: _system, password: SYS) to verify installation status.


πŸ’‘ How to Use

Once withLove is running, access the Chat Interface:

🌐 Frontend: http://localhost:port/withlove/index.html

Example 1: Create a FHIR Patient API

πŸ’¬ You: "Create a FHIR R4 API for managing patients with CPF validation"

πŸ€– withLove:
βœ… Detected: HS.SDA3.Patient (50,000 records)
βœ… Generating CRUD endpoints:

  • GET /fhir/Patient
  • GET /fhir/Patient/:id
  • POST /fhir/Patient
  • PUT /fhir/Patient/:id

βœ… Adding validations:

  • CPF format validator
  • Active status check

βœ… Deploying to: /withlove/services/hospital-main/PatientAPI

Click β€œApprove” β†’ API is live in seconds!

Test it:

curl -X GET http://localhost:52773/withlove/services/hospital-main/PatientAPI/list \
  -H "X-Tenant-ID: hospital-main" \
  -H "Authorization: Bearer your-api-key"

Example 2: Generate a Database Table

πŸ’¬ You: "Create a table for Dengue cases with fields: PatientID, Symptoms, TestDate, Result"

πŸ€– withLove:
βœ… Generating persistent class: dc.withLove.hospital-main.data.DengueCase
βœ… Fields:

  • PatientID (String, indexed)
  • Symptoms (String, MAXLEN="")
  • TestDate (Date)
  • Result (String: Positive/Negative/Pending)
    βœ… Compiled successfully
    βœ… Table available: dc_withLove_hospital_main_data.DengueCase


Example 3: Create an HL7 Integration

πŸ’¬ You: "Create a DTL to transform HL7 ADT^A04 messages into SDA3.Patient"

πŸ€– withLove:
βœ… Generating DTL: dc.withLove.hospital-main.interop.ADTToPatient
βœ… Source: EnsLib.HL7.Message (ADT_A04)
βœ… Target: HS.SDA3.Patient
βœ… Mappings:

  • PID:PatientName β†’ Patient.Name
  • PID:PatientID β†’ Patient.PatientNumbers
  • PID:DOB β†’ Patient.BirthTime
    βœ… Compiled successfully


Example 4: Scan Brownfield System

πŸ’¬ You: "Scan my system and suggest APIs to create"

πŸ€– withLove:
πŸ” Scanning namespace: HSREGISTRY
βœ… Found 127 classes (47 SDA3, 80 custom)

πŸ“Š Top Entities by Volume:

  1. HS.SDA3.Patient (12.5M records) ⭐ Suggest: GET /fhir/Patient
  2. HS.SDA3.Encounter (45M records) ⭐ Suggest: GET /fhir/Encounter
  3. Custom.Lab.Result (22M) ⚠️ Not FHIR-compliant (suggest migration)

⚠️ Issues Detected:

  • HS.SDA3.Encounter: Missing index on PatientID (slow queries >500ms)
  • Custom.Patient.Insurance: No tenant isolation (security risk)


Example 5: Add Knowledge to RAG

Upload Protocol:

curl -X POST http://localhost:52773/api/knowledge/add \
  -H "Content-Type: application/json" \
  -H "X-Tenant-ID: hospital-main" \
  -d '{
    "title": "Dengue Treatment Protocol 2026",
    "content": "Treatment guidelines for dengue patients..."
  }'

Query with Context:

πŸ’¬ You: "How should I treat a dengue patient according to our protocol?"

πŸ€– withLove:
πŸ“š Found relevant document: "Dengue Treatment Protocol 2026"

According to your protocol:

  1. Immediate hydration (IV fluids)
  2. Monitor platelet count every 6 hours
  3. Administer paracetamol for fever (avoid NSAIDs)
    ...

πŸ—‚οΈ Project Structure

withLove/
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ dc/
β”‚   β”‚   └── withLove/
β”‚   β”‚       β”œβ”€β”€ engine/          # Core AI Factories
β”‚   β”‚       β”‚   β”œβ”€β”€ GenAi.cls    # LLM Orchestrator
β”‚   β”‚       β”‚   β”œβ”€β”€ AppFactory.cls
β”‚   β”‚       β”‚   β”œβ”€β”€ ApiFactory.cls
β”‚   β”‚       β”‚   β”œβ”€β”€ ClassFactory.cls
β”‚   β”‚       β”‚   └── FHIRHandler.cls
β”‚   β”‚       β”‚   └── InteropFactory.cls
β”‚   β”‚       β”œβ”€β”€ service/         # Business Logic
β”‚   β”‚       β”‚   β”œβ”€β”€ Dispatch.cls # REST API Router
β”‚   β”‚       β”‚   β”œβ”€β”€ KnowledgeService.cls
β”‚   β”‚       β”‚   β”œβ”€β”€ ScannerService.cls
β”‚   β”‚       β”‚   └── RestRouter.cls
β”‚   β”‚       └── storage/         # Data Models
β”‚   β”‚           β”œβ”€β”€ Project.cls
β”‚   β”‚           β”œβ”€β”€ AppVersion.cls
β”‚   β”‚           β”œβ”€β”€ Tenant.cls
β”‚   β”‚           β”œβ”€β”€ LLMSession.cls
β”‚   β”‚           └── KnowledgeBase.cls
β”œβ”€β”€ csp/
β”‚   β”œβ”€β”€ index.html              # Chat Interface
β”œβ”€β”€ docker-compose.yml
β”œβ”€β”€ Dockerfile
└── README.md

πŸ“Ή Highlights: Building with Love 🀍

See the Full Stack Architect agent in action. Zero boilerplate, pure creation.

Category Demo (Click to Watch) Description
πŸ’Ύ Table (Backend) Table Demo Designing robust SQL Tables (%Persistent) with JSON adapters instantly.
🧠 RAG (Knowledge) RAG Demo Teaching the AI about specific medication via Chat prompt.
πŸ”Œ API (Services) API Demo Deploying a REST API with Auto-Healing & Error Handling.
πŸ”₯ FHIR (Integration) FHIR Demo *Generating synthetic FHIR R4 JSON *

Note: Click the images above to watch the YouTube Shorts.


πŸ”Œ API Reference

Core Endpoints

Endpoint Method Description
/withlove/api/agent/chat POST Conversational agent (main interface)
/withlove/api/deploy POST Deploy generated assets
/withlove/api/knowledge/add POST Add document to RAG
/withlove/api/knowledge/list GET List RAG documents

Dynamic Service Endpoints

Generated APIs follow the pattern:

/withlove/services/<tenant>/<service-name>/*

Example:

GET /withlove/services/hospital-main/PatientAPI/list
POST /withlove/services/hospital-main/PatientAPI/create
PUT /withlove/services/hospital-main/PatientAPI/update/:id

πŸ“Š Roadmap

βœ… v0.9 MVP (Done)

  • UI Agent (App generation)
  • Backend Agent (Class generation)
  • API Agent (REST API generation)
  • Interop Agent (DTL/BO generation)
  • RAG Knowledge Base
  • Brownfield Scanner

πŸŽ–οΈ Credits

withLove is developed with πŸ’œ by the Musketeers Team:

3Musketeers-br


πŸ“„ License

This project is licensed under the MIT License.


πŸ’¬ Support

Made with
Install
zpm install dc-withlove download archive
Version
1.0.020 Feb, 2026
Ideas portal
Category
Frameworks
Works with
InterSystems IRIS for HealthInterSystems IRIS
First published
20 Feb, 2026
Last edited
20 Feb, 2026