Initial Release
Production-ready RAG applications with InterSystems IRIS. Zero-configuration APIs, enterprise-grade architecture, and seamless LangChain integration.
from rag_templates import RAG
Works immediately - no setup required
rag = RAG()
rag.add_documents(["Your documents here"])
answer = rag.query("What is machine learning?")
print(answer)
import { RAG } from '@rag-templates/core';
const rag = new RAG();
await rag.addDocuments(["Your documents here"]);
const answer = await rag.query("What is machine learning?");
console.log(answer);
// Direct IRIS integration via Embedded Python
Set bridge = ##class(RAG.PythonBridge).%New()
Set result = bridge.Query("What is machine learning?", "basic")
Write result.answer
# Python pip install rag-templates
JavaScript/Node.js
npm install @rag-templates/core
Centralized schema management with automatic migration support:
LangChain-compatible vector store with enterprise features:
from rag_templates.storage import IRISVectorStore
Drop-in LangChain replacement
vector_store = IRISVectorStore(connection_manager, config_manager)
retriever = vector_store.as_retriever(search_kwargs={"k": 5})
Environment-aware configuration with validation:
from rag_templates.config import ConfigurationManager
config = ConfigurationManager()
Supports RAG_DATABASE__IRIS__HOST env vars
Automatic YAML loading with schema validation
Technique | Description | Best For | Status |
---|---|---|---|
basic | Standard vector similarity | General purpose, fast queries | β Production |
colbert | Token-level embeddings with MaxSim | High precision retrieval | β Production* |
crag | Corrective RAG with self-correction | Accuracy-critical applications | β Production |
hyde | Hypothetical Document Embeddings | Complex reasoning tasks | β Production |
graphrag | Graph-based knowledge retrieval | Structured knowledge bases | β Production |
hybrid_ifind | Multi-modal search combination | Enterprise search | β Production |
noderag | Node-based structured retrieval | Hierarchical data | β Production |
*ColBERT: Includes experimental Pylate integration with pluggable backend support (native
/pylate
).
Simple API - Zero configuration for prototypes:
rag = RAG() # Works immediately
Standard API - Production configuration:
rag = ConfigurableRAG({
'technique': 'colbert',
'llm_provider': 'openai'
})
Enterprise API - Full control:
config = ConfigManager.from_file('enterprise-config.yaml')
rag = ConfigurableRAG(config)
Variable | Description | Default |
---|---|---|
RAG_DATABASE__IRIS__HOST |
IRIS database host | localhost |
RAG_EMBEDDING__MODEL |
Embedding model name | all-MiniLM-L6-v2 |
RAG_LLM__PROVIDER |
LLM provider | openai |
RAG_TECHNIQUE |
RAG technique to use | basic |
The Multi-Cloud Platform (MCP) integration allows you to easily deploy and manage RAG services as microservices. This design enables flexible deployment across various environments and seamless integration with existing enterprise systems.
Create MCP servers in minutes:
import { createMCPServer } from '@rag-templates/mcp';
const server = createMCPServer({
name: "knowledge-server",
description: "Company knowledge base",
ragConfig: { technique: 'graphrag' }
});
server.start();
The IRIS SQL tool provides direct SQL access and advanced vector search capabilities within your MCP-deployed RAG services. It allows for efficient data manipulation and retrieval directly from InterSystems IRIS databases, leveraging its powerful SQL and vector functionalities. This integration streamlines data management for RAG applications, enabling complex queries and high-performance vector lookups.
For detailed setup and usage, refer to the MCP Integration Guide.
Guide | Description |
---|---|
π User Guide | Complete usage guide and best practices |
π MCP Integration Guide | Multi-Cloud Platform integration, MCP server creation, and IRIS SQL tool usage |
π Documentation | Additional documentation and guides |
# Quick setup and validation make setup-env && make install make validate-iris-rag && make test-unit
Full end-to-end testing with 1000+ documents
make load-1000 && make test-1000
Performance benchmarking
make test-ragas-1000-enhanced
Technique | Original Paper | Key Repository | Additional Resources |
---|---|---|---|
Basic RAG | Retrieval-Augmented Generation | Facebook Research | LangChain RAG |
ColBERT | ColBERT: Efficient and Effective Passage Retrieval | Stanford ColBERT | Pylate Integration |
CRAG | Corrective Retrieval Augmented Generation | CRAG Implementation | LangGraph CRAG |
HyDE | Precise Zero-Shot Dense Retrieval | HyDE Official | LangChain HyDE |
GraphRAG | From Local to Global: A Graph RAG Approach | Microsoft GraphRAG | Neo4j GraphRAG |
NodeRAG | Hierarchical Text Retrieval | NodeRAG Implementation | Hierarchical Retrieval |
We welcome contributions! See our Contributing Guide for details.
MIT License - see https://github.com/intersystems-community/iris-vector-rag/blob/master/LICENSE file for details.
Transform your RAG development from complex to enterprise-ready. Start building in minutes, scale to production.